3,313 research outputs found

    Arena

    Get PDF
    Newsletter of the Boston University School of Medicine, Student American Medical Association (SAMA

    Ion beam sputter etching and deposition of fluoropolymers

    Get PDF
    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE

    An overview of Viscosity Solutions of Path-Dependent PDEs

    Full text link
    This paper provides an overview of the recently developed notion of viscosity solutions of path-dependent partial di erential equations. We start by a quick review of the Crandall- Ishii notion of viscosity solutions, so as to motivate the relevance of our de nition in the path-dependent case. We focus on the wellposedness theory of such equations. In partic- ular, we provide a simple presentation of the current existence and uniqueness arguments in the semilinear case. We also review the stability property of this notion of solutions, in- cluding the adaptation of the Barles-Souganidis monotonic scheme approximation method. Our results rely crucially on the theory of optimal stopping under nonlinear expectation. In the dominated case, we provide a self-contained presentation of all required results. The fully nonlinear case is more involved and is addressed in [12]

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Azelastine hydrochloride, a dual-acting anti-inflammatory ophthalmic solution, for treatment of allergic conjunctivitis

    Get PDF
    Over 50% of patients who seek treatment for allergies present with ocular symptoms. Our current ability to control ocular allergic symptoms is greater than ever before. Newer dual-acting topical eyedrops attack multiple facets of the allergic cascade. Azelastine has antihistaminic effects providing immediate relief, mast cell stabilization providing early-phase intervention, and inhibition of expression and activation of anti-inflammatory mediators which characterize the late phase of the immune reaction. The ophthalmic eyedrop formulation is approved for treatment of allergic conjunctivitis in adults and children aged over 3 years. In clinical trials comparing azelastine with other dual-acting eyedrops, such as levocabastine and olopatadine, azelastine was reported to be slightly less efficacious and to sting briefly upon administration. Even so, many patients experienced the full benefit of symptom relief, and preferred azelastine. As a broad-spectrum drug, azelastine offers many desirable properties for management of ocular allergies. Because it can often produce maximal effect with just twice-daily dosing, azelastine is a particularly good choice for the allergic population in whom minimizing exposure to topical products and preservatives is a key concern

    Toddler-Inspired Visual Object Learning

    Get PDF
    Real-world learning systems have practical limitations on the quality and quantity of the training datasets that they can collect and consider. How should a system go about choosing a subset of the possible training examples that still allows for learning accurate, generalizable models? To help address this question, we draw inspiration from a highly efficient practical learning system: the human child. Using head-mounted cameras, eye gaze trackers, and a model of foveated vision, we collected first-person (egocentric) images that represents a highly accurate approximation of the "training data" that toddlers' visual systems collect in everyday, naturalistic learning contexts. We used state-of-the-art computer vision learning models (convolutional neural networks) to help characterize the structure of these data, and found that child data produce significantly better object models than egocentric data experienced by adults in exactly the same environment. By using the CNNs as a modeling tool to investigate the properties of the child data that may enable this rapid learning, we found that child data exhibit a unique combination of quality and diversity, with not only many similar large, high-quality object views but also a greater number and diversity of rare views. This novel methodology of analyzing the visual "training data" used by children may not only reveal insights to improve machine learning, but also may suggest new experimental tools to better understand infant learning in developmental psychology

    The Impact of Heterogeneity on Operator Performance in Future Unmanned Vehicle Systems

    Get PDF
    Recent studies have shown that with appropriate operator decision support and with sufficient automation, inverting the multiple operators to single-unmanned vehicle control paradigm is possible. These studies, however, have generally focused on homogeneous teams of vehicles, and have not completely addressed either the manifestation of heterogeneity in vehicle teams, or the effects of heterogeneity on operator capacity. An important implication of heterogeneity in unmanned vehicle teams is an increase in the diversity of possible team configurations available for each operator, as well as an increase in the diversity of possible attention allocation schemes that can be utilized by operators. To this end, this paper introduces a discrete event simulation (DES) model as a means to model a single operator supervising multiple heterogeneous unmanned vehicles. The DES model can be used to understand the impact of varying both vehicle team design variables (such as team composition) and operator design variables (including attention allocation strategies). The model also highlights the sub-components of operator attention allocation schemes that can impact overall performance when supervising heterogeneous unmanned vehicle teams. Results from an experimental case study are then used to validate the model, and make predictions about operator performance for various heterogeneous team configurations.The research was supported by Charles River Analytics, the Office of Naval Research (ONR), and MIT Lincoln Laboratory

    A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem

    Full text link
    A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η≃10−13\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure
    • …
    corecore